

Faithful Model Explanations through **E**nergy-**C**onstrained **C**onformal **Counterfactuals**

Patrick Altmeyer (p.altmeyer@tudelft.nl), Mojtaba Farmanbar, Arie van Deursen,

Cynthia C. S. Liem

ECCCo ECCCo+ REVISE Schut Wachter Factual $\sqrt{0}$ the Block Bor

BACKGROUND

Counterfactual Explanations (CE) explain

how inputs into a

We argue that counterfactual explanations should only be as plausible as the model permits. In Figure 2,

which counterfactual provides the most

model need to change for it to produce different outputs

 $\min_{\mathbf{Z'}\in\mathcal{Z}^L} \{ yloss(M_{\theta}(f(\mathbf{Z'})), \mathbf{y^+}) \}$ $+\lambda \operatorname{cost}(f(\mathbf{Z'}))\}$

search.

adequate explanation for the classifier?

Figure 2: Factual images and counterfactuals for flipping the predicted label of a multi-layer perceptron (MLP) trained on MNIST from 9 to 7.

PLAUSIBILITY We define plausible counterfactuals as:

consistent with the true data generating process

Plausibility is positively associated with actionability, robustness and causal validity.

FAITHFULNESS

MOTIVATION

We define faithful counterfactuals as:

consistent with what the model has learned about the data

If the model posterior approximates the true distribution, faithfulness and plausibility coincide.

Figure 3: Kernel density estimate (KDE) for the conditional distribution based on observed data.

METHOD

Use the hybrid objective of joint energy models (JEM) and a model-agnostic penalty for predictive uncertainty:

> $\min_{\mathbf{Z'}\in\mathcal{Z}^L} \{L_{\text{clf}}(f(\mathbf{Z'}); M_{\theta}, \mathbf{y^+}) + \lambda_1 \text{cost}(f(\mathbf{Z'}))\}$ + $\lambda_2 \mathcal{E}_{\theta}(f(\mathbf{Z'})|\mathbf{y^+}) + \lambda_3 \Omega(C_{\theta}(f(\mathbf{Z'});\alpha)))$

Figure 5: Gradient fields and counterfactual paths for different generators.

LEARN MORE

Figure 4: KDE for conditional distribution learned by model. Generated samples in bright yellow.

RESULTS

(a)

(c)

(d)

(b)

ECCCo generates counterfactual explanations that

faithfully represent model quality achieve state-of-the-art plausibility

Figure 6: Turning a 'nine' into a 'seven'. ECCCo applied to MLP (a), Ensemble (b), JEM (c), JEM Ensemble (d).

Thus, it can help humans to distinguish trustworthy from unreliable models.

		California Housing			GMSC		
Model	Generator	Unfaithfulness \downarrow	Implausibility \downarrow	Uncertainty \downarrow	Unfaithfulness \downarrow	Implausibility \downarrow	Uncertainty \downarrow
MLP Ensemble	ECCCo	3.69 ± 0.08**	1.94 ± 0.13	0.09 ± 0.01**	$3.84 \pm 0.07 **$	2.13 ± 0.08	$0.23 \pm 0.01^{**}$
	ECCCo+	$3.88 \pm 0.07 * *$	1.20 ± 0.09	0.15 ± 0.02	3.79 ± 0.05**	1.81 ± 0.05	$0.30 \pm 0.01*$
	ECCCo (no CP)	$3.70 \pm 0.08 **$	1.94 ± 0.13	$0.10 \pm 0.01^{**}$	$3.85 \pm 0.07 **$	2.13 ± 0.08	0.23 ± 0.01 **
	ECCCo (no EBM)	4.03 ± 0.07	1.12 ± 0.12	$0.14 \pm 0.01^{**}$	4.08 ± 0.06	0.97 ± 0.08	$0.31 \pm 0.01*$
	REVISE	$3.96 \pm 0.07*$	$0.58 \pm 0.03^{**}$	0.17 ± 0.03	4.09 ± 0.07	$0.63 \pm 0.02^{**}$	0.33 ± 0.06
	Schut	4.00 ± 0.06	1.15 ± 0.12	0.10 ± 0.01 **	4.04 ± 0.08	1.21 ± 0.08	$0.30 \pm 0.01*$
	Wachter	4.04 ± 0.07	1.13 ± 0.12	0.16 ± 0.01	4.10 ± 0.07	0.95 ± 0.08	0.32 ± 0.01
JEM Ensemble	ECCCo	$1.40 \pm 0.08 **$	$0.69 \pm 0.05^{**}$	$0.11 \pm 0.00 **$	$1.20 \pm 0.06*$	$0.78 \pm 0.07 * *$	0.38 ± 0.01
	ECCCo+	$1.28 \pm 0.08 **$	$0.60 \pm 0.04 **$	$0.11 \pm 0.00 **$	1.01 ± 0.07**	$0.70 \pm 0.07 **$	0.37 ± 0.01
	ECCCo (no CP)	$1.39 \pm 0.08 **$	$0.69 \pm 0.05^{**}$	$0.11 \pm 0.00 **$	$1.21 \pm 0.07*$	$0.77 \pm 0.07 * *$	0.39 ± 0.01
	ECCCo (no EBM)	1.70 ± 0.09	0.99 ± 0.08	$0.14 \pm 0.00*$	1.31 ± 0.07	0.97 ± 0.10	0.32 ± 0.01 **
	REVISE	1.39 ± 0.15**	0.59 ± 0.04**	0.25 ± 0.07	$1.01 \pm 0.07 **$	$0.63 \pm 0.04^{**}$	0.33 ± 0.07
	Schut	$1.59 \pm 0.10^*$	1.10 ± 0.06	0.09 ± 0.00**	1.34 ± 0.07	1.21 ± 0.10	0.26 ± 0.01**
	Wachter	1.71 ± 0.09	0.99 ± 0.08	0.14 ± 0.00	1.31 ± 0.08	0.95 ± 0.10	0.33 ± 0.01
I able 1: Subsample of our empirical findings for tabular datasets.							

